

PRESSE PLIEUSE HORIZONTALE PP200CNC

NS: 2023-631

MANUEL D'INSTRUCTIONS

PRADA NARGESA, S.L

Ctra. de Garrigàs a Sant Miquel s/n · 17476 Palau de Santa Eulàlia (Girona) SPAIN Tel. +34 972568085 · nargesa@nargesa.com · www.nargesa.com

Merci d'avoir choisi nos machines

www.nargesa.com

TABLE DES MATIÈRES

1. CARACTÉRISTIQUES DE LA MACHINE	3
1.1. Identification de la machine	3
1.2. Dimensions générales	3
1.3. Description de la machine	3
1.4. Identification des éléments composants	4
1.5. Caractéristiques générales	5
1.6. Identifications des protections	5
2. TRANSPORT ET RANGEMENT	6
2.1. Transport	6
2.2. Conditions de stockage	6
3. ENTRETIEN ET NETTOYAGE	7
3.1. Maintenance hydraulique	7
3.2. Maintenance de nettoyage	7
4. INSTALLATION ET MISE EN MARCHE	8
4.1. Situation de la machine	8
4.2. Espace de travail	8
4.3. Conditions externes admises	9
4.4. Connection électrique	9
5. MENÚ PRINCIPAL	10
6. POINÇONNER	11
7. PLIER	14
8. DÉCOUPER	21
9. MODE POSITIONNEMENT MANUEL	23
10. MENU	25
10.1. Service à distance	25
10.2. Importer/exporter des paramètres, des matériaux et des programmes	26
10.3. Étalonnage de l'écran tactile	27
10.4. Gestion des outils	28
10.4.1. Outils de poinçonnage	29
10.4.2. Outils de pliage	31
10.4.3. Outils de cisaillement	35
11. RÉGLAGE DE LA FORCE	36
12. ANOMALIES POSSIBLES	37
12.1. Anomalies électriques	37
13. AVERTISSEMENTS	38
14. ACCESSOIRES	39

ANNEXE TECHNIQUE

CARACTÉRISTIQUES TECHNIQUES DES ACCESSOIRES

1. CARACTÉRISTIQUES DE LA MACHINE

1.1. Identification de la machine

Marque	Nargesa
Туре	Presse plieuse horizontale
Modèle	PP200CNC

1.2. Dimensions générales

Image 1. Dimensions extérieures de la Presse plieuse horizontale.

1.3. Description de la machine

La polyvalence de la Presse horizontale NARGESA PP200CNC permet de réaliser quantité de pièces et d'opérations en fonction des besoins du moment. Avec cette machine, on peut courber, couper, mettre en forme à froid, etc... Tout dépendra du type d'outillage que l'on placera sur sa table. À la fin de ce manuel, on pourra voir un petit échantillon des outillages disponibles.

1.4. Identification des composants

N NARGESA [®]	www.nargesa.com
PRADA NARGESA, S.L CTRA 17476 PALAU DE STA. EULALIA	A. DE GARRIGAS A SANT MIQUEL S/N (GIRONA) SPAIN - TEL.(+34) 972568085
TRADEMARK NARGESA M	ODEL PP200
YEAR OF MANUFACTURE SE	ERIAL Nº
DIMENSIONS 660x1180x1130	mm. WEIGHT 665 Kg.
POWER 2,2 Kw. INTENSITY 9/5	A. VOLTAGE V. Hz 50/60

1.5. Caractéristiques générales

Puissance de moteur	2,2 KW / 3 CV a 1400r.p.m
Tonsion électrique	230/400 V Triphasée 50/60 Hz
	230 V Monophasée 50/60 Hz
Force de travail	20.000 Kg / 200 KN
Vitesse de travail	10 mm/s
Vitesse de retour	35 mm/s
Course maximale	250 mm
Capacité de répétition	0,05 mm
Dimensions de la table	600x1170 mm
Dimensions	660x1180x1130 mm
Poids	665 Kg

1.7. Identification des protections

Couvecle supérieur

Image 4. Localisation des protections de sécurité

Il est TOTALEMENT INTERDIT de travailler sans que les protections soient montées. Les protections ne seront démontées (si nécesaire) qu'en cas de panne et toujours lorsque la machine est à l'arrêt.

2. TRANSPORT ET STOCKAGE

2.1. Transport

Le transport de la machine se fera au moyen d'un chariot élévateur ou d'un transpalette, en prenant comme point d'appui la base inférieure de la machine (conçue à cet effet).

Il faut tenir compte du risque de renversement de la machine.

Image 5. Transport de la machine

2.2. Conditions de rangement

- * Humidité relative entre 30% et 95% sans condensation.
- * Température entre 15°C et 55°C.
- * Ne rien empiler sur la machine.
- * Ne pas démonter la machine pour son rangement.

3. ENTRETIEN ET NETTOYAGE

La Presse horizontale NARGESA PP200CNC retiendra l'attention sur les points de maintenance suivants :

- Maintenance hydraulique
- Maintenance de nettoyage

3.1. Maintenance hydraulique

Vu que la Presse horizontale NARGESA PP200CNC dispose de mécanismes hydrauliques, il faudra vérifier périodiquement le niveau d'huile du réservoir. À cet effet, le réservoir dispose d'un œilleton (1) qui permet d'en observer le niveau. La vérification du niveau d'huile se fera toujours avec la machine arrêtée et en position de repos.

Localisation des éléments pour l'entretien hydraulique

Dans le cas où le niveau est bas, on remplit avec de l'huile hydraulique HM 68 par le bouchon (2) jusqu'à voir l'huile par l'œilleton(1) (à peu près à la moitié de l'œilleton). Une révison du niveau d'huile est conseillée au minimum un fois tous les trois mois

3.2 Maintenance de nettoyage

Lors d'une utilisation quotidienne de la Presse horizontale NARGESA PP200CNC, il pourrait se produire des résidus métalliques (scories, copeaux, etc...) pouvant gêner le bon fonctionnement de la machine. C'est pourquoi il est recommandé de nettoyer la machine, spécialement la zone de travail, à la fin de chaque journée de travail.

4. INSTALLATION ET MISE EN MARCHE

4.1. Situation de la machine

La Presse horizontale NARGESA PP200CNC sera placée sur une surface plane et pouvant être mise de niveau. Si on le souhaite, on peut la fixer au sol au moyen des trous réalisés à sa base dans ce but.

Image 8. Fixation de la machine

4.2. Espace de travail

Vu les possibilités offertes par la Presse horizontale NARGESA PP200CNC, il est indispensable de prévoir l'espace suffisant pour travailler sur tout le périmètre de la machine, en tenant compte du fait que la limitation maximale ou minimale dépendra de l'outillage qui sera utilisé à chaque moment. Il est conseillé à l'opérateur de se placer derrière la machine et de toujours emmener avec lui la pédale de mise en marche.

Image 9. Zone de travail de la PP200CNC

4.3. Conditions externes admises

Les conditions de travail de la machine peuvent osciller entre +5°C et +50°C, pour une température maximale continue de +45°C (24 heures).

Les conditions d'humidité ambiante peuvent osciller entre 30% et 90% sans condensation.

4.4. Connexion électrique

La Presse horizontale NARGESA PP200CNC est conçue pour être connectée à une prise de courant de 230/400 volts triphasique à 50/60 Hz.

Au moment de brancher, il faut s'assurer que le moteur électrique tourne dans le sens correct (le sens est indiqué par l'adhésif placé sur le moteur). S'il ne tourne pas dans le sens corect, il faut tourner une des phases d'entrée.

Figure en étoile (prédéterminée) Pour une tension de 400V

Figure triangulaire Pour une tension de 230V

Remarque: En cas de variation de tension, il sera nécessaire de procéder à un changement de la protection du moteur électrique selon le tableau suivant:

TENSION	GARDE-MOTEUR
230 V	7 - 10 A
400 V	4 - 6 A

5. MENU PRINCIPAL

Pour mettre sous tension la machine, placez l'interrupteur de mise en marche sur la position « Sous tension ». L'écran affiche l'interface initiale ou « Menu principal » :

À ce stade, la machine se trouve en « StandBy » (repos) ; c'est-à-dire que la machine est activée, mais qu'elle est maintenue en mode repos, en attente d'effectuer une opération :

Poinçonner

Plier

Découper

Mode positionnement manuel

Il convient de noter à ce stade que notre presse plate est livrée avec le mode « Éco » activé. Pourquoi quelle raison ceci est si important ? Eh bien, la raison en est que la machine dispose d'un mode d'économie d'énergie qui permet, tout d'abord, de nous aligner sur les mesures nécessaires afin de freiner le changement climatique irréversible (nous sommes une entreprise soucieuse de l'environnement). Deuxièmement, et non des moindres, cela vous permet, en tant que client, d'économiser un maximum d'énergie lorsque vous travaillez sur la machine, ce qui rend votre produit final plus compétitif en termes de prix.

Ce mode « Éco » se charge essentiellement d'arrêter tous les éléments qui ont une consommation d'énergie plus élevée si une période d'inactivité relativement longue est détectée. Cependant, et pour éviter d'avoir à réactiver tous les éléments lorsque vous souhaitez travailler, ils démarrent automatiquement à la seule pression de la pédale.

6. POINÇONNER

Lorsque vous accédez à la fonction « Poinçonner », l'écran suivant s'affiche :

Pour procéder au poinçonnage, vous devez saisir les paramètres suivants dans la CNC. Pour ce faire, pressez chaque icône pour sélectionner chaque paramètre :

Pressez la touche 👕 ou 👕 pour sélectionner un poinçon et une matrice dans la bibliothèque :

N NARGESA	Poinçon 🗙	16:57
Q 17	3mm/N28	
U 1/	3.5mm/N28	
M Alu	4mm/N28	
	4.5mm/N28	
1.0	5mm/N28	
10112	5.5mm/N28	
1.2	6mm/N28	

La CNC sélectionne automatiquement l'un ou l'autre en fonction de votre choix. Autrement dit, si vous sélectionnez un poinçon, la CNC sélectionne la matrice adaptée à ce poinçon, et inversement.

N NAR	GESA [®] 3.5	Sélectionner le matériel 🗙	16:58
	~ -	Alu	
	3.5	Fe450	
M	Alι	Fe700	
		Inox 304	
14	1.0	Inox 316	
13	0.2		
1	N		

Pressez la touche M pour sélectionner le matériau :

Nous appuierons sur la touche pour insérer l'épaisseur du matériau en millimètres ou en pouces selon la configuration :

Une fois la valeur numérique saisie, pressez la touche « SET » pour confirmer.

À présent, la valeur de puissance requise pour le poinçonnage apparaît à droite de l'icône **1**. Généralement, il n'est pas nécessaire de modifier cette valeur, bien que vous puissiez le faire pour réduire ou augmenter la puissance que vous voulez utiliser pendant les opérations de travail.

Pour finir, réglez la fin de course du poinçon au moyen de la barre de progression ou le champ numérique situé en dessous de la barre.

Remarque : veillez à régler la course du piston de manière à ce qu'il ne se déplace pas plus de ce qui est nécessaire, en augmentant ainsi inutilement le temps de chaque poinçonnage.

Une fois ces paramètres établis, pressez la touche 🕐 pour mettre la machine en marche. Insérez le matériau dans la zone de poinçonnage, puis appuyez sur la pédale pour procéder.

Si nous regardons le menu vertical, à droite de l'écran, nous remarquons que l'icône ψ est sélectionnée. Cela indique que vous êtes en sous-mode « Manuel » ou, en d'autres termes, que l'avance du piston s'effectue à l'aide de la pédale de marche avant, mais pour faire reculer le piston, il faut changer de pédale et appuyer sur la pédale de marche arrière.

Il est possible de passer en mode « Auto » en appuyant sur l'icône *Q*. Dans ce sous-mode, le retour du piston ne nécessite pas l'intervention de l'opérateur et, par conséquent, ne nécessite pas d'alternance entre les deux pédales physiques de la machine pour effectuer le travail.

Il est important de se rappeler que vous pouvez basculer entre ces sous-modes chaque fois que nécessaire en appuyant simplement sur l'icône correspondante.

7. PLIER

Lorsque vous accédez à la fonction « Plier », l'écran suivant s'affiche :

Pour procéder au pliage, vous devez saisir les paramètres suivants dans la CNC.

Pressez la touche 🔰 pour sélectionner un poinçon dans la bibliothèque :

Pressez la touche 🔰 pour sélectionner une matrice dans la bibliothèque :

N NARCESA	Sélectionnez la matrice 🔀	17:02
PS.	M50-A35-L25	
У.Т. 🜉	T.80.25.30	
	M.460R/16	
99.	M.460R/22	
-	M.460R/35	
	M.460R/50	
	M.75.85.63	

Pressez la touche N pour établir l'angle de pliage :

N NARGESA	Min: 30 Max: 180	i	Calc	*	17:02
			99.0		d s
					\cup
🍆 Т.80.:	1	2	3		
99.0	4	5	6		
	7	8	9		
		0	+/-		
		SI	ET	7	
	((\bigcirc	
A 99.0 Alu 20	4 7 CANCEL	5 8 0 51	6 9 +/-	7	

Une fois la valeur numérique saisie, pressez la touche « SET » pour confirmer.

Ensuite, pressez l'image suivante pour établir la position du poinçon et indiquez si :

Le poinçon se trouve en position 1

Le poinçon se trouve en position 2

Pressez la touche 🚺 pour sélectionner un matériau dans la bibliothèque :

N NARGESA	Sélectionner le matériel 🔀	17:04
PS.	Alu	
8.Т 🥏	Fe450	
	Fe700	
99.	Alu 20	
-	Alu 22	
	Steel 34	
	Steel 42	

Pressez la touche **I** , et saisissez l'épaisseur du matériau :

NNARO	GESA [®]	Min: 1 Max: 2		Calc	*	17:04
	PS.13			2.0		()
	T.80.2	1	CE 2	C 3		
A	99.0	4	5	6		
		7	8	9		
IM	Alu 2		0	+/-	08	
	3	CANCEL	SI	=1		
				(\bigcirc	

Pressez la touche « SET » pour confirmer les données.

Pour finir, réglez la fin de course du poinçon au moyen de la barre de progression ou le champ numérique situé en dessous de la barre.

Remarque : veillez à régler la course du piston de manière à ce qu'il ne se déplace pas plus de ce qui est nécessaire, en augmentant ainsi inutilement le temps de chaque pliage.

Une fois ces paramètres établis, pressez la touche 🕐 pour mettre la machine en marche. Insérez le matériau dans la zone de pliage, puis appuyez sur la pédale pour procéder.

Correction du pliage

Si vous devez corriger l'angle de pliage, arrêtez le processus de pliage, puis établissez la correction requise. Pressez l'icône , puis saisissez les degrés de correction.

Pressez la touche « SET » pour confirmer et procéder à un nouveau pliage.

Mode automatique et mode manuel

Jusqu'à présent, nous avons effectué les opérations de pliage en mode manuel (mode indiqué dans le menu vertical de droite par l'icône \checkmark). Dans ce mode, le mouvement aussi bien vers l'avant que vers l'arrière du piston s'effectue en appuyant sur les pédales correspondantes, ce qui signifie que l'opérateur doit intervenir pour avancer ou reculer.

Toutefois, lorsque vous réalisez une multitude de pièces, il peut être gênant de changer constamment de pédale. Si tel est le cas, vous pouvez utiliser le mode de pliage automatique. Pour le sélectionner, il suffit de cliquer sur l'icône of située à droite de l'écran.

Après la fin de chaque pliage, nous remarquons que le piston revient automatiquement à la position indiquée par la barre verticale. Si vous appuyez à nouveau sur la pédale de pliage, le piston avancera et à la fin de l'opération il reculera à nouveau. De cette façon, il n'est pas nécessaire pour l'opérateur de changer constamment de pédale, ce qui accélère et simplifie le travail.

Sauvegarde des programmes

Nous allons maintenant expliquer la zone suivante de l'écran (située en haut) :

La finalité de cette zone est de permettre de réaliser plusieurs plis pour former une même pièce. En d'autres termes, supposons que nous voulions faire une pièce avec deux plis, un à 90° et l'autre à 120°.

Jusqu'à présent, la seule option que nous ayons est de faire d'abord le pli à 90°, de changer les données d'angle à 120° et de faire un nouveau pli. Par ailleurs, si vous devez fabriquer plusieurs pièces, vous devez répéter ces étapes pour chacune des pièces. Il s'agit d'une opération très fastidieuse et elle conduit très facilement à des erreurs.

C'est à ce moment-là que vous devez utiliser la barre de pas du programme. Elle permet d'ajouter de nouveaux plis à une même pièce. Ainsi, et en continuant avec l'exemple présenté (une pièce à deux plis), après avoir indiqué toutes les données commentées pour pouvoir travailler, vous devez cliquer sur l'onglet avec le symbole « + ».

Ce faisant, vous remarquerez qu'une nouvelle étape a été ajoutée avec les mêmes données que vous aviez déjà, à l'exception de l'angle et de sa correction. À cette nouvelle étape, vous n'avez qu'à entrer 120° comme donnée d'angle.

À ce stade, vous pouvez continuer à créer de nouveaux plis pour la même pièce ou vous pouvez déjà effectuer les opérations de pliage. Il est important de mentionner ici que si nous modifions des données autres que l'angle ou sa correction à l'une des étapes, cette modification est reportée sur toutes les étapes, c'est-à-dire que nous pouvons les considérer comme des données générales du programme.

Le passage d'une étape à l'autre s'effectue en cliquant sur l'onglet souhaité.

Il est maintenant temps de fabriquer physiquement notre pièce. Pour ce faire, nous suivrons les mêmes étapes que celles expliquées ci-dessus. La seule différence que nous observerons est qu'après avoir terminé chaque pliage, le logiciel se positionnera automatiquement au pliage suivant. De cette façon, nous pouvons réaliser notre pièce (qui contient deux plis) de manière très simple.

Maintenant, il est possible qu'il soit nécessaire de fabriquer une nouvelle pièce. Alors qu'advient-il des données que nous avons déjà à l'écran ? Sont-elles perdues ?

N NARGESA

La réponse est non, car nous pouvons enregistrer toutes les données qui nous permettent de fabriquer notre pièce pour les charger ultérieurement et continuer à fabriquer le même type de pièces. Pour atteindre cet objectif, il suffit d'appuyer sur le texte « [*] » qui apparaît en haut à gauche de l'écran.

Ce faisant, un écran apparaîtra pour saisir le nom avec lequel vous souhaitez enregistrer ce programme. Il est recommandé de mettre un nom descriptif, de cette façon, il sera beaucoup plus facile de savoir par la suite quelle fonction a chacun des programmes enregistrés.

Après quoi, le texte « [*] » changera pour le nom du programme que vous avez saisi. Il est important de rappeler à ce stade qu'il est toujours possible de modifier les données dans notre programme. Si nous le faisons, un astérisque apparaîtra après le nom du programme pour nous rappeler que notre programme contient à nouveau des données non enregistrées. Pour les sauvegarder, il suffit d'appuyer à nouveau sur le nom du programme.

À ce stade, il est temps de parler de la gestion des programmes. Autrement dit, jusqu'à présent, nous n'avons enregistré que notre programme, mais comment créer un nouveau programme ? Ou comment en charge-t-on un déjà réalisé précédemment ?

La réponse est simple, il vous suffit d'appuyer sur l'icône de menú 👔 située en bas à droite de l'écran. Cette icône permet d'accéder à l'écran suivant.

Maintenant, nous cliquons sur l'icône suivante et accédons à l'écran de gestion des programmes :

Grâce à cette interface, il est possible d'effectuer les opérations suivantes :

- 📝 Nouveau programme
- Charger ou éditer un programme
- Copier un programme
- Renommer un programme
- Supprimer un programme
 - Mode dossier

Les opérations possibles à effectuer ne nécessitent pas plus que la pression de la part de l'opérateur sur l'icône correspondante. Cependant, il est nécessaire de commenter la fonction « Mode dossier ».

Ce mode permet d'effectuer les mêmes opérations avec les mêmes icônes déjà citées, mais cette fois sur des dossiers stockés sur le disque dur interne de la commande numérique. Il s'agit d'une option avancée que vous utiliserez rarement, mais si vous êtes en mesure de profiter de cette fonctionnalité, il est possible d'organiser vos programmes de manière très personnalisée.

8. DÉCOUPER

Lorsque vous accédez à la fonction « Découper », l'écran suivant s'affiche :

Pour procéder à la découpe, vous devez saisir les paramètres suivants dans la CNC.

Pressez la touche M pour sélectionner le matériau :

Appuyez sur la touche pour insérer l'épaisseur du matériau en millimètres ou en pouces selon la configuration :

Une fois la valeur numérique saisie, pressez la touche « SET » pour confirmer.

Pour finir, réglez la fin de course de la cisaille au moyen de la barre de progression ou le champ numérique situé en dessous de la barre.

Remarque : veillez à régler la course du piston de manière à ce qu'il ne se déplace pas plus de ce qui est nécessaire, en augmentant ainsi inutilement le temps de chaque découpe.

Une fois ces paramètres établis, pressez la touche 🕐 pour mettre la machine en marche.

Insérez le matériau dans la zone de découpe, puis appuyez sur la pédale pour procéder.

Rappelez-vous que pendant l'opération de cisaillement, il existe les mêmes sous-modes déjà expliqués dans la fonction de pliage. Ces sous-modes sont « Manuel » et « Automatique », et ils fonctionnent de la même manière. Le mode manuel nécessite la pédale de marche avant et la pédale de marche arrière pour fonctionner. Par contre, le mode automatique ne nécessite pas de pédale de marche arrière puisque cette action s'effectue de manière autonome à la fin de chaque opération.

9. MODE DE POSITIONNEMENT MANUEL

Lors de l'accès à la fonction « Mode de positionnement manuel », cet écran apparaît :

Pour travailler en mode manuel, vous devez saisir les paramètres suivants dans la CNC.

Pressez la touche 🛔 , et saisissez la cote de début du piston :

Une fois la valeur numérique saisie, pressez la touche « SET » pour confirmer.

Pressez la touche 🚦 , et saisissez la cote de fin du piston :

Une fois la valeur numérique saisie, pressez la touche « SET » pour confirmer.

Vous pouvez également établir ces deux cotes au moyen de la barre de progression.

Remarque : veillez à régler la course du piston de manière à ce qu'il ne se déplace pas plus de ce qui est nécessaire, en augmentant ainsi inutilement le temps de chaque opération.

Une fois ces paramètres établis, pressez la touche 🕐 pour mettre la machine en marche.

Insérez le matériau dans la zone de découpe, puis appuyez sur la pédale pour procéder à l'opération.

Comme dans tous les modes précédents (poinçonnage, pliage et cisaillement), il est possible de travailler avec un sous-mode manuel ou automatique qui permet, le cas échéant, de faciliter et d'accélérer le travail de l'opérateur qui gère la machine

10. MENU

10.1. Service à distance

La presse est conçue pour pouvoir être connectée à Ethernet au moyen du câble fourni à cette fin. Son adresse IP au sein du réseau local est « 10.10.51.110 » ; cette adresse est préétablie d'usine. En outre, cela vous permet de bénéficier du service à distance de la machine.

Ce service permet à Nargesa, en tant que fabricant de la presse, de se connecter à distance à la machine, afin non seulement de résoudre les éventuels problèmes techniques, mais aussi offrir au client une formation à distance.

Pour activer le service distant, appuyez sur la touche afin d'accéder à la fenêtre des menus, puis l'icône

Modèle	Erreur4101	Serial	0		11:00
	Module			Version	\bigcirc
					*
Start Remote Service	Stop Co Remote rés Service rés	nfig eau Optior	าร	•	Ö

Les renseignements indiqués à la figure précédente correspondent au modèle et au numéro de série de contrôle de la presse, mais aussi aux versions des différentes bibliothèques informatiques disponibles dans l'interface d'utilisateur.

Pour activer le service à distance de façon à ce que le département d'assistance technique de Nargesa puisse se connecter à la machine pour résoudre les éventuels problèmes ou offrir une formation à distance, vous devez presser la touche **START REMOTE SERVICE**. Toutefois, nous pouvons dire que ce mode est déjà activé par défaut sur toutes nos machines.

10.2. Importer/exporter des paramètres, des matériaux et des programmes

Vous pouvez, le cas échéant, importer ou exporter tous les paramètres de configuration de la presse, ainsi que les matériaux définis et les programmes créés, pour effectuer des copies de sauvegarde.

La me	émoire Interne				11:03
	USB	D:\			U
	D:/			•••	
Filtres	s				
	Paramètres		Users		
	Database		Styles		
	Static data		Translations		
	User PLC				X/
	Importer		🧩 Exp	orter	Ŵ

Pour accéder à la fenêtre montrée à la figure précédente, pressez la touche 🌾 . Une fois sur l'écran des menus, pressez la touche 🖋

Par défaut, tous les filtres et l'option de mémoire interne sont activés. Pressez *pour* sauvegarder tous les paramètres, matériaux et outils dans la mémoire interne de contrôle de la presse, et ainsi effectuer une copie de sécurité. Par ailleurs, si vous souhaitez réaliser une copie de sécurité sur un support amovible, par exemple un dispositif USB externe, il vous suffit de sélectionner l'option USB, et pressez une nouvelle fois la touche.

Il est important d'effectuer des copies de sécurité régulièrement, afin de disposer d'une sauvegarde des paramètres, des matériaux et des outils créés. S'il s'avère nécessaire de récupérer la totalité ou une partie de ces informations, il vous suffit de sélectionner la source des données (mémoire interne ou USB externe).

10.3. Étalonnage de l'écran tactile

L'écran est livré d'usine parfaitement étalonné et prêt à l'emploi. Toutefois, il peut s'avérer nécessaire de l'étalonner si vous constatez que celui-ci ne répond pas de façon précise aux actions de l'opérateur chargé de l'utiliser.

Pour réaliser cette opération correctement, pressez tout d'abord la touche pour accéder à la fenêtre des menus. Une fois sur la fenêtre des menus, pressez la touche . Une fois cela fait, le message suivant s'affiche à l'écran :

Si vous acceptez, en pressant \checkmark , le processus d'étalonnage s'affiche à l'écran tactile et démarre. Dès lors, les informations affichées à l'écran sont remplacées par les informations suivantes :

Une croix apparaît au milieu de l'écran. Pressez la croix et maintenez-la pressée jusqu'à ce qu'elle se déplace sur une nouvelle position. Répétez cette opération plusieurs fois sur différents points de l'écran jusqu'à ce que vous ayez terminé l'étalonnage tactile.

10.4 Gestion des outils

La presse plate est livrée avec une bibliothèque complète contenant tous les outils avec lesquels vous pouvez travailler. Cependant, il est parfois possible qu'en tant qu'utilisateur, vous ayez besoin d'un outil spécifique pour un travail particulier qui n'existe pas dans la bibliothèque d'origine. Dans ce cas, vous devrez soit nous contacter pour fabriquer un tel outil pour vous, soit le créer vous-même.

Quoi qu'il en soit, maintenant la question est de savoir comment indiquer au logiciel que nous utilisons ce nouvel outil ? La réponse est de créer notre nouvel outil pour l'ajouter ensuite à la bibliothèque déjà existante.

Pour atteindre l'objectif susmentionné, nous devons appuyer sur l'icône située du menu général. Ce faisant, l'écran suivant apparaît :

Grâce à cette interface, nous sélectionnons le type d'outil en question, ou en d'autres termes, si nous allons utiliser cet outil pour poinçonner, plier ou cisailler. En bien, les icônes et leurs fonctions sont présentées ci-dessous :

Outils de poinçonnage

Outils de pliage

10.4.1 Outils de poinçonnage

En accédant à l'écran des outils de poinçonnage, nous apercevons l'interface suivante qui correspond aux matériaux définis pour ce mode de travail.

En appuyant sur les icônes du menu horizontal, situé en bas de l'écran, il est possible d'effectuer les opérations suivantes :

N NARGESA POI	nçonnage: Maté	riaux		16:32
Nom	Dureté	Epaisseur mi	Epaisseur ma	al.
Alu	22.0	0.1	20.0	
Fe450	45.0	0.1	20.0	$\mathbf{\nabla}$
Fe700	70.0	0.1	10.0	
Inox 304	50.0	0.1	20.0	
Inox 316	55.0	0.1	20.0	
		6		**
		Î		

Créer un nouveau matériel

Éditer un matériel déjà existant

Supprimer un matériel existant

Il est nécessaire de commenter à ce stade que lors de la création ou de l'édition d'un matériau, l'écran suivant apparaît. En cela, nous devons saisir toutes les données indiquées ci-dessous qui sont, tout d'abord, celles qui définissent physiquement les caractéristiques du matériau.

Nom	Fe700
Dureté	70.0
Épaisseur minimale	0.1
Épaisseur maximale	10.0

Nous allons maintenant créer l'outil lui-même. Pour ce faire, nous appuyons sur l'icône () située sur la partie droite du menu horizontal du bas. La fenêtre de poinçons-matrices pour le poinçonnage apparaît.

N NARGE	sa Poinço	onnage: p	oinçons-n	natrices			16:51
Nom	Len	Per	Pen	Т	Forme	Pos	
10.5m	58.00	32.98	1.50	10.5	Círculo	0	(\mathbf{I})
10mm	58.00	31.41	1.50	10.0	Círculo	0	\cup
10X10	58.00	40.00	1.00	10.0	Cuadrad	0	
11.5m	58.00	36.12	1.50	11.5	Círculo	0	
11mm	58.00	34.55	1.50	11.0	Círculo	0	
11X11	58.00	44.00	1.00	11.0	Cuadrad	0	
11X17	58.00	46.55	1.50	11.0	Oval	0	
11X23	58.00	58.55	1.50	11.0	Oval	0	
12.5m	58.00	39.27	1.50	12.5	Círculo	0	
12mm	58.00	37.69	1.50	12.0	Círculo	0	•
101/10	F0 00	10 00	1 50	10.0	^	^	
			- 5	1	1		102

Ici, et comme à l'écran de gestion du matériel, les icônes du bas sont celles qui effectuent les opérations. Cependant, nous n'allons pas répéter ici la fonction de chacune des icônes du menu du bas, puisqu'elles effectuent toujours les mêmes actions (nouvel élément, édition d'élément, suppression d'élément, etc.).

Pour créer ou éditer un outil, nous devons entrer les données suivantes, qui sont ce qui le définit physiquement dans la réalité. Vous trouverez ci-dessous, et à titre d'exemple uniquement, la présentation des données d'un outil déjà existant. Cependant, si nous voulons créer un nouvel outil, nous devons saisir les données réelles qui le définissent.

Nom	
Longueur poinçon	
Périmètre	
Pénétration	
Épaisseur maximale	
Forme	Cercle
Position	0
🖌 🗸	×

10.4.2 Outils de pliage

En accédant à l'écran des outils de pliage, tout comme c'était le cas avec les outils de poinçonnage, la première chose que l'on voit ce sont les matériaux déjà définis pour ce mode de travail. Si nécessaire, nous créerons, modifierons ou supprimerons des matériaux dans cette interface. Ces opérations (comme expliqué aux points antérieurs) s'effectuent à l'aide des icônes du menu horizontal du bas.

NARGESA Presse horizontale	Matériaux			17:05
Nom		Dureté		4
Alu	11.0			
Alu 20	20.0		1	\cup
Alu 22	24.0			
Fe450	51.0			
fe500	50.0			
Fe700	71.3			
Inox 55	55.0			
lnox 60	60.0			
Steel 34	34.0			
Steel 42	42.0			
	10.0			
	6			102

Étant donné que la fonction de pliage est l'une des opérations les plus complexes que la presse plate peut effectuer, nous devons remarquer qu'ici l'importance des matériaux passe à un niveau supérieur. C'est-àdire qu'après avoir défini un certain matériau, pour finir de corriger le comportement de la machine lors du processus de pliage, il est possible de définir certaines corrections pour certaines épaisseurs et certains angles. Ceci est possible en appuyant sur l'icône **1** du menu du bas.

Ce faisant, l'écran suivant apparaît :

N NARGESA Press	se horizontale	: Épaissei Alu	urs		17:17
Épaisseur 0.1	10	Nouveau	Modifier	Effacer	
Ang	le		Correctior	ı	
					Q
					₩
(t	R

Une fois à l'intérieur de cette fenêtre, il est possible de créer, modifier ou supprimer des épaisseurs en appuyant sur le texte situé sur la ligne horizontale à la hauteur de l'épaisseur.

De plus, pour chaque épaisseur, il est possible de définir une correction pour chaque angle. Cela implique que ces corrections seront appliquées de manière générale lors de la sélection de l'épaisseur et de l'angle spécifiques dans la fonction de pliage.

Cette explication peut être difficile à comprendre, mais il s'agit d'une fonction avancée qui vous permet de corriger le comportement du processus de pliage sans avoir à saisir les mêmes corrections encore et encore pour les mêmes angles.

Comme toujours, la création, l'édition et la suppression de corrections se font à l'aide des icônes du menu du bas.

Pour quitter ce mode et revenir à l'écran des matériaux, il suffit d'appuyer sur l'icône distribution également située dans le menu horizontal du bas.

De retour sur l'écran des matériaux, nous appuyons sur l'icône [] du menu du bas pour accéder aux poinçons de pliage. La fenêtre qui apparaît est la suivante :

NNARGE	sal Poinço	ons					17:48
Nombre	Altura	Ángulo	Radio	Prensa.	Tipo	Pos	al.
P.22.8	46.00	80.0	0.80	20.0	Default	0	
P.40.8	55.00	80.0	0.80	40.0	Default	0	\bigcirc
P.70.3	70.00	30.0	0.80	50.0	Default	0	
P.70.8	69.00	80.0	0.80	100.0	Default	0	\frown
P.95.3	65.00	35.0	5.00	100.0	Prom	0	
PK.13	105.00	85.0	0.80	60.0	Prom	0	
PS.13	104.00	30.0	0.80	70.0	Prom	0	
PS.13	105.00	85.0	0.80	100.0	Prom	0	
		_					**
			*	1			
		_			_		

En suivant le même processus expliqué d'innombrables fois, nous pouvons créer, modifier et supprimer des poinçons. Vous trouverez ci-dessous les données qui définissent physiquement un poinçon. Il convient de tenir compte du fait que ces données sont celles d'un poinçon existant dans la bibliothèque. Si vous avez besoin de créer un nouvel outil, vous devez entrer les données qui le définissent en réalité.

Nom			
Hauteur			
Angle			
Rayon			
Pression			
Туре		Default	
Position			
	~		\$

À ce stade, et pour résumer, nous pouvons dire qu'en entrant, nous avons accédé à l'écran des matériaux et en appuyant sur l'icône, nous avons pu gérer les poinçons de pliage.

Si nous appuyons à nouveau sur la même icône (), nous accéderons maintenant à l'écran de gestion des matrices :

NINARCE	Matri	~~	348-249/WW - 348	5			10.01
IN NARGE	Matri	се					10.01
Nom	H	W	Ang	L	Rad	Pos	
M.460	60.00	60.00	85.0	16.00	2.00	0	
M.460	60.00	60.00	85.0	22.00	2.00	0	\bigcirc
M.460	60.00	60.00	85.0	35.00	2.00	0	
M.460	60.00	60.00	85.0	50.00	3.00	0	
M.75	75.00	60.00	85.0	63.00	6.00	0	
M.80	80.00	60.00	85.0	80.00	6.00	0	
M.95	95.00	60.00	80.0	100.00	8.00	0	
M50-A	50.00	50.00	35.0	25.00	2.00	0	
T.80.2	80.00	60.00	30.0	25.00	2.00	0	
		_	s.	1		_	
			- ^				

Comme toujours, le menu du bas est celui qui permet de gérer les éléments (création, édition et suppression). Les données qui définissent physiquement un modèle sont les suivantes :

Encore une fois, si vous devez créer votre propre outil, dans ce cas un modèle, vous devrez saisir les bonnes données qui définissent cet élément dans la réalité et non les valeurs indiquées ici.

10.4.3 Outils de cisaillement

N NARGESA Ma	atériaux			18:12
Nom	Dureté	Épaisseur mir	Épaisseur ma	
Alu	10.0	1.0	10.0	
Fe450	50.0	1.0	40.0	
Fe700	70.0	1.0	60.0	
				*
		<u>*</u>		Ŕ

En accédant à l'écran des outils de cisaillement, nous observerons ce qui suit :

Pour être plus exact, nous pouvons dire que pour le mode de cisaillement nous ne définissons aucun outil particulier, nous définissons uniquement les caractéristiques qui déterminent les matériaux spécifiques avec lesquels nous allons travailler. En fin de compte, ce sont les données qui définissent le comportement de la cisaille et non d'autres.

Ainsi, la création, l'édition et la suppression de matériaux se refont avec les icônes qui apparaissent dans le menu situé dans la partie du bas de la fenêtre.

Les données physiques qui définissent un matériau sont les suivantes :

Nom	Alu
Dureté	10.0
Épaisseur minimale	1.0
Épaisseur maximale	10.0
 ✓ 	

Comme toujours, les données présentées à titre d'exemple correspondent à un matériau existant dans la bibliothèque fournie avec la machine. Si nous devons créer de nouveaux matériaux, nous devons saisir les bonnes données qui les définissent dans la réalité.
11. RÉGLAGE DE LA FORCE

La Presse horizontale NARGESA PP200CNC fournit 20.000 Kg de force, ce qui peut s'avérer excessif pour certaines applications. C'est pourquoi la PP200 incorpore un système de réglage de force permettant de diminuer la force de la machine.

Image 12. Èléments du réglage de la force.

Pour diminuer la force de la PP200CNC, il faut suivre la procédure décrite ici :

1. Placez un objet résistant devant la tête de travail pour que celle-ci ait une butée.

2. Désserrez l'écrou qui bloque le bouton du régulateur de pression.

3. Poussez sur la pédale d'avancement pour que la PP200CNC bute contre l'objet résistant.

4. Au moment où elle bute, tournez le bouton régulateur de pression dans la direction du symbole — On observe que la manomètre situé à côté indique une valeur de plus en plus petite. Quand on a la pression voulue, lâcher la pédale.

5. Serrez l'écrou de blocage du bouton du régulateur de pression.

À ce moment, la PP200CNC est réglée pour exercer moins de force. Déplacez la tête de travail vers l'arrière et enlevez l'objet résistant.

Pour augmenter la force, réalisez la même opération mais au lieu de tourner le bouton du régulateur de pression dans le sens — il faut le tourner vers le sens —

Remarque: Rappelez-vous que, après avoir diminué la force, la PP200 n'exercera pas toute sa force disponible.

12. ANOMALIES POSSIBLES

12.1. Anomalies électriques

Suite à un usage quotidien de la Presse horizontale NARGESA PP200CNC, il peut survenir des situations d'anomalies que nous essayons de décrire ici dans le but d'en faciliter l'usage et la réparation.

Anomalie	Cause	Solution
	Le courant n'arrive pas	Assurez-vous que la machine est bien connectée
Le cadran de	Il manque une phase d'alimentation	Verifiez que les trois phases de courant arrivent bien
ne s'illumine pas	La protection thermique de la manœuvre est désactivée	Réarmez le magnéto thermique de la manœuvre
	Le fusible de protection est fondu	Remplacez le fusible
	Le thermique de protection du moteur est désactivé	Réarmez la protection du moteur
Le moteur électrique	Une phase d'alimentation ne fonctionne pas	Vérifiez que les trois phases de courant arrivent bien
ne se met pas en marche	L'arrêt d'urgence est activé	Débloquez l'arrêt d'urgence et réarmez la machine
	ll n'y a pas de contact du moteur	Contactez le service technique

Remarque: En cas de récurrence des anomalies, contactez, s'il-vous-plaît, le service technique de NARGESA.

13. AVERTISSEMENTS

- Ne manipulez aucun des éléments de la machine pendant qu'elle est en fonctionnement.
- Ne pas utilisez la machine à des fins non décrites dans le présent manuel.
- Utilisez les gants pour la manipulation des éléments de la machine et pendant le processus de travail.
- Utilisez des lunettes et des botines de protection homologuées.
- Fixez le matériel de base.
- Ne travaillez pas sans les protections qui équipent la machine.

En cas d'accident par négligence de l'opérateur, pour ne pas s'être tenu aux normes d'usage et de sécurité décrites dans ce manuel, NARGESA SL ne pourra être tenu responsable.

14. ACCESSOIRES

Matrice de pliage a 161 mm. · V16, 22 35 50 mm. PP200CNC

Matrice de pliage jusqu'à 161mm avec 4 ouvertures (16, 22, 35, 50mm) et un poinçon de 80°. Cette forme permet de plier des tôles de 1mm à 8 mm. Le poinçon de diamètre extérieur de 70 mm permet de réaliser des formes complètement fermées jusqu'à un minimum de 75mm d'aile intérieure.

Référence matrice: 125-16-01-00006 **Référence poinçon:** 131-16-01-00041

V 16: Tôle de 1 a 3mm
V 22: Tôle de 2 a 4mm
V 35: Tôle de 3 a 6mm
V 50: Tôle de 4 a 8mm
Longueur maximale de pli: 161mm
Epaisseur maximale de pli: 8mm
Outillage de série livré avec la machine.

													I	T	0	n	/r	n													
v		D .						E	E = n	nm	42	- 48	kg/r	nm²																	
v	п	RI	0.5	0.8	1	1.2	1.5	1.8	2	2.5	3	4	5	6	8	10	12	15	20	25											
4	2.6	0.7	4	10.5																			-		-		_	_	-		R
6	3.9	0.9	2.5	6.5	10																	Т		1	N.	A	R	G	ES	SA	7
8	5.2	1.5	2	5.5	8	11.5	18														'										
10	6.5	1.7		4.1	6.5	9.5	14.5	21	26													1	W	wv	v.r	nar	ge	sa	.co	m	
12	7.8	2			5.5	8	12	17.5	21.5	33.5												_									
16	10.4	2.7				6	9	13	16	25	36																				
20	13	3.4					7.5	10.5	13	20	29	52																			
26	18	4.2						8.5	10.5	16	23	41	64									Е	1	/							
30	20	5								14	19	34	54	77								×				_					
35	23	6									17	30	46	66								7				Ri					
42	27	6.7									15	26	40	58	103								Г								
45	29	7.5										23	36	52	91								L			V				/	
50	32	8.5										21	32	46	82	128											/				
60	39	10											27	39	69	107							1						, I	н/	~
70	45	11.7												33	59	92	132						L								
80	52	13.5												29	52	80	116	180					L			V		M	. 1		
90	58	15													46	71	103	160						٢				1			
100	65	17													41	64	93	144	256												
110	71	18.5														59	84	131	233												
120	78	20														54	77	120	213												
140	91	24															66	103	183												
170	110	29															55	85	151												
200	130	35																72	128	200											

Matrice de mise en forme de barreau 01

Référence: 140-16-01-00001

Matrice pour mettre en forme des barreaux de forge à froid pour des grilles, portails, clôtures, balustrades, etc... Pour d'autres formes ou capacités, consulter le fabricant.

Largeur max.	Epaisseur	Longueur de la matrice	Poids
20 mm	4,5,6,8 mm	656 mm	21 Kg

► Matrice pour anneaux

Référence: 140-16-01-00003

Matrice pour mettre en forme des volutes ou des balustrades anglaises en rambarde, utilisée comme pièce de forge ornementale pour les grilles, des portails, des clôtures, barrières, etc... pour l'assemblage entre les barreaux. Pour d'autres mesures et d'autres applications, consulter le fabricant.

Largeur max.	Épaisseur	Mesures extérieures	Poids
50 mm	6 mm	90 mm	9.3 Kg

Matrice de mise en forme de barreau 04

Référence: 140-16-01-00004

Matrice pour mettre en forme des barreaux de forge à froid pour des grilles, portails, clôtures, balustrades, etc... Pour d'autres formes ou capacités, consulter le fabricant.

Mesures du carré	Longueur de la matrice	Poids
5,6,8,10,12,14,16,18 mm	600 mm	20,5 Kg

Matrices pour courber des profilés de grands rayons PP200CNC

Référence: 140-16-01-00006

Matrice pour former des courbes de grand rayon sur des tiges, des tubes, massifs ou profilés. Idéal pour courber des petites séries ou des pièces uniques sans nécessité de moules sur mesure.

Capacité máx. massif	Capacité máx. tube	Diamètre min.	Diamètre máx.	Poids
40 mm ou 1 1/2"	80x80 mm ou 3"	300 mm	ll n'y a pas de maximum	35 Kg

Matrice de mise en forme de barreau 08

Référence: 140-16-01-00008

Matrice pour mettre en forme des barreaux de forge à froid pour des grilles, portails, clôtures, balustrades, etc... Pour d'autres formes ou capacités, consulter le fabricant.

Largeur max.	Épaisseur	Longueur de la matrice	Poids
20 mm	4,5,6,8 mm	650 mm	19,5 Kg

▶ Matrice de mise en forme de barreau 09

Référence: 140-16-01-00009

Matrice pour mettre en forme des barreaux de forge à froid pour des grilles, portails, clôtures, balustrades, etc... Pour d'autres formes ou capacités, consulter le fabricant.

Mesures du carré	Longueur de la matrice	Poids
5,6,8,10,12 mm	522 mm	22 Kg

Matrice de mise en forme de barreau 10

Référence: 140-16-01-00010

Matrice pour mettre en forme de barreau de forge à froid pour des grilles, appelée "poitrine de pigeon". Pour d'autres formes ou capacité, consulter le fabricant.

Mesures du carré	Longueur de la matrice	Poids
12 mm	1165 mm	50 Kg

Matrice de mise en forme de barreau 11

Référence: 140-16-01-00011

Matrice pour mettre en forme des barreaux de forge à froid pour des grilles, portails, clôtures, balustrades, etc... Pour d'autres formes ou capacités, consulter le fabricant.

Mesures du carré	Longueur de la matrice	Poids
6,8,10,12 mm	760 mm	32,5 Kg

Matrice de mise en forme de barreaux de grille torsadés

Référence: 140-16-01-00013

Matrice pour plier des planches, rampes, ou tiges en carré pour réaliser de beaux effets tressés.Très utilisée en clôtures et grillages.

Pour rampes de 6, 12 et 14mm. (Pour dimensions différents ou spéciaux, contactez le fabricant)

Capacité max.	Capacité min.	Poids
Carré de 14 mm	Planche de 2x40 mm	18 Kg

▶ Matrice pour couper des rampes 100x10 mm. PP200CNC

Référence: 140-16-01-00014

Matrice pour couper des platines, rampes ou planchettes jusqu'à 100mm pour une épaisseur maximale de 10mm en acier.

Long. max. coupe	Epaisseur max. coupe	Poids
100 mm	10 mm	23 Kg

▶ Matrice de mise en forme d'extrémité de tubes PP200CNC

Référence: 140-16-01-00016

Matrice de base pour modifier les extrémités des tubes pour leur assemblage. Peut réaliser toute sorte de formes et onglets selon les besoins du client. Pour des formes spéciales, consulter le fabricant.

Poids: 110 Kg. Aprox.

Outils de réduction de diamètre PP200CNC

Cône de réduction PP200CNC

Référence: 140-16-01-RE001

Cet accessoire est couplé à la **Matrice de mise en forme d'éxtrémité de tubes**, afin d'effectuer l'opération de réduction des extrémités des tubes.

Cet accessoire est utilisé dans toutes les tailles de tubes, c'est-à-dire qu'il n'est pas nécessaire d'en acquérir plus d'un, car il est adaptable à tous les diamètres.

Poids: 12,7 Kg.

Porte-pince de réduction PP200CNC

Référence: 140-16-01-RE002

Accessoire dans lequel sont fixées les pinces réductrices de différents diamètres.

Il est nécessaire d'acquérir une pince de réduction spécifique pour chaque tube en fonction de son diamètre initial et du diamètre final que l'on veut atteindre.

Poids: 4,6 Kg.

Pince de réduction PP200CNC

Cet accessoire est couplé au **porte-pince de réduction**, pour réaliser l'opération de réduction des extrémités des tubes.

Il est nécessaire d'acquérir une pince de réduction spécifique pour chaque tube en fonction de son diamètre initial et du diamètre final que l'on veut atteindre.

Voir le tableau suivant des pinces de réduction:

16mm	10mm	76mm	140-16-01-RE16-10	Pince Réductrice Tube 16-10 Long. Max. 76mm
19mm	13mm	76mm	140-16-01-RE19-13	Pince Réductrice Tube 19-13 Long. Max. 76mm
22mm	16mm	76mm	140-16-01-RE22-16	Pince Réductrice Tube 22-16 Long. Max. 76mm
25mm	19mm	76mm	140-16-01-RE25-19	Pince Réductrice Tube 25-19 Long. Max. 76mm
28mm	22mm	76mm	140-16-01-RE28-22	Pince Réductrice Tube 28-22 Long. Max. 76mm
32mm	26mm	76mm	140-16-01-RE32-26	Pince Réductrice Tube 32-26 Long. Max. 76mm
35mm	29mm	76mm	140-16-01-RE35-29	Pince Réductrice Tube 35-29 Long. Max. 76mm
38mm	32mm	76mm	140-16-01-RE38-32	Pince Réductrice Tube 38-32 Long. Max. 76mm
42mm	36mm	76mm	140-16-01-RE42-36	Pince Réductrice Tube 42-36 Long. Max. 76mm
45mm	39mm	76mm	140-16-01-RE45-39	Pince Réductrice Tube 45-39 Long. Max. 76mm
48mm	42mm	76mm	140-16-01-RE48-42	Pince Réductrice Tube 48-42 Long. Max. 76mm
51mm	45mm	76mm	140-16-01-RE51-45	Pince Réductrice Tube 51-45 Long. Max. 76mm
54mm	48mm	76mm	140-16-01-RE54-48	Pince Réductrice Tube 54-48 Long. Max. 76mm
57mm	51mm	76mm	140-16-01-RE57-51	Pince Réductrice Tube 57-51 Long. Max. 76mm
60mm	54mm	76mm	140-16-01-RE60-54	Pince Réductrice Tube 60-54 Long. Max. 76mm
63mm	57mm	76mm	140-16-01-RE63-57	Pince Réductrice Tube 63-57 Long. Max. 76mm
66mm	60mm	76mm	140-16-01-RE66-60	Pince Réductrice Tube 66-60 Long. Max. 76mm
69mm	63mm	76mm	140-16-01-RE69-63	Pince Réductrice Tube 69-63 Long. Max. 76mm
73mm	67mm	76mm	140-16-01-RE73-67	Pince Réductrice Tube 73-67 Long. Max. 76mm

Outils d'expansion de diamètre PP200CNC

Porte-pince pour élargir tube PP200CNC

Référence: 140-16-01-EX001

Cet accessoire est couplé à la **Matrice de mise en forme d'éxtrémité de tubes**, afin d'effectuer l'opération d'expansion des extrémités des tubes.

Cet accessoire est utilisé dans toutes les tailles de tubes, c'est-à-dire qu'il n'est pas nécessaire d'en acquérir plus d'un, car il est adaptable à tous les diamètres.

Mandrin d'Expansion PP200

Référence: 140-16-01-EX002

Cet accessoire est couplé à la **Matrice de mise en forme d'éxtrémité de tubes**, afin d'effectuer l'opération d'expansion des extrémités des tubes.

Cet accessoire est utilisé dans toutes les tailles de tubes, c'est-à-dire qu'il n'est pas

Pince Expandre Tube PP200CNC

Cet accessoire est couplé à la **Matrice de mise en forme d'éxtrémité de tubes**, afin d'effectuer l'opération d'expansion des extrémités des tubes.

Il est nécessaire d'acquérir une pince de réduction spécifique pour chaque tube en fonction de son diamètre initial et du diamètre final que l'on veut atteindre.

ØA min.	ØB max.	C max.	Référence	Description
22mm	28mm	40mm	140-16-01-EX22-28	Pince Expandre Tube 22-28 Long. Max. 40mm
25mm	31mm	40mm	140-16-01-EX25-31	Pince Expandre Tube 25-31 Long. Max. 40mm
28mm	34mm	50mm	140-16-01-EX28-34	Pince Expandre Tube 28-34 Long. Max. 50mm
31mm	37mm	60mm	140-16-01-EX31-37	Pince Expandre Tube 31-37 Long. Max. 60mm
35mm	41mm	60mm	140-16-01-EX35-41	Pince Expandre Tube 35-41 Long. Max. 60mm
38mm	44mm	65mm	140-16-01-EX38-44	Pince Expandre Tube 38-44 Long. Max. 65mm
41mm	47mm	65mm	140-16-01-EX41-47	Pince Expandre Tube 41-47 Long. Max. 65mm
44mm	50mm	80mm	140-16-01-EX44-50	Pince Expandre Tube 44-50 Long. Max. 80mm
47mm	53mm	80mm	140-16-01-EX47-53	Pince Expandre Tube 47-53 Long. Max. 80mm
51mm	57mm	80mm	140-16-01-EX51-57	Pince Expandre Tube 51-57 Long. Max. 80mm
54mm	60mm	80mm	140-16-01-EX54-60	Pince Expandre Tube 54-60 Long. Max. 80mm
60mm	66mm	80mm	140-16-01-EX60-66	Pince Expandre Tube 60-66 Long. Max. 80mm

Matrice pour redresser des profilés PP200CNC

Référence: 140-16-01-00017

Matrice utilisée pour redresser des profilés ou tout autre pièce. Ajustable à différentes capacités en fonction du profilé.

Capacité maximale	Poids
H 150 mm	72 Kg

Matrice de mise en forme de barreau 20

Référence: 140-16-01-00020

Matrice pour mettre en forme des barreaux de forge à froid pour des grilles, portails, clôtures, balustrades, etc... Pour d'autres formes ou capacités, consulter le fabricant.

Mesures du carré	Mesures de la circonférence	Poids
12x12 mm	90 mm	11 Kg

Matrice poinçonnage

Référence: 140-16-01-00022

Matrice pour poinçonner, compatible avec des poinçons de la marque Nargesa.

Col-de-cygne: 54 mm

Distance libre de l'outillage: 95 mm

-	Ronde	Carré	Rectangulaire	Ovale	Poids
Capacité max. poinçonneuse	43 mm	35 mm	20x34mm	21x40 mm	52 Kg

Porte-poinçons Promecam PP200CNC

Référence: 140-16-01-00023

Porte-poinçons pour tout type de poinçons de plieuse Promecam.

Compatible avec n'importe quel poinçon Promecam

Long. Máx. pli	Poids
150 mm	14 Kg

Matrice de mise en forme de colliers PP200CNC

Référence: 140-16-01-00024

Matrice pour former des colliers de toute sorte. Cet outillage est fabriqué selon les besoins du client. Pour sa fabrication, il faut les plans ou une pièce de modèle.

Capacité maximale

100x4 mm

Poinçons spéciaux

Poinçons de pliage pour plier des pièces spéciales de dimensions réduites ou de pliure jusqu'à 30 degrés.

Poinçon de pliage D70 30° Référence: 140-16-01-00025 Longueur max. de pli: 100mm Degré du poinçon: 30° Diamètre du poinçon: 70mm

Poinçon de pliage D40 80° Référence: 140-16-01-00026 Longueur max. de pli: 60mm Degré du poinçon: 80° Diamètre du poinçon: 40mm

Poinçon de pliage D22 80° Référence: 140-16-01-00027 Longueur max. de pli: 60mm Degré du poinçon: 80° Diamètre du poinçon: 22mm

Poids: 3Kg chaque unité, approximativement

Matrice de mise en forme d'agrafes de barreaux

Référence: 140-16-01-00028

Matrice pour fabriquer les agrafes utilisées pour unir des barreaux de forge sans besoin de soudure.

Capacité maximale	Poids
25x5 mm	9 Kg

Adaptateur de matrice de mise en forme

Référence: 140-16-01-00029

Adaptateur pour les matices de mise en forme. Interchangeable et compatible avec chacune des matrices de mise en forme de barreau. Il est indispensable d'avoir au moins un adaptateur pour pouvoir travailler avec les matrices spécialisées.

Poids: 3,1 Kg

Poinçon Promecam PS.135.85.R08

Référence: 140-16-01-00030 Longueur de pli: 161 mm **Poids:** 3,2 Kg

Poinçon Promecam P.95.35.R5

Référence: 140-16-01-00031 Longueur de pli: 161 mm Poids: 2,3 Kg

▶ Poinçon Promecam PS.134.30.R08

Référence: 140-16-01-00032 Longueur de pli: 161 mm Poids: 2,7 Kg

▶ Poinçon Promecam PK.135.85.R08

Référence: 140-16-01-00038 Longueur de pli: 161 mm Poids: 4,4 Kg

► Matrices de pliage de tôles épaisses

Matrices Promecam de différentes ouvertures pour plier des tôles, rampes ou planchettes de grande épaisseur jusqu'à15mm. Pour des épaisseurs supérieures, consulter le fabricant.

Matrice de pliage T80.25.35 PP200CNC REF. 140-16-01-00036 Longueur de pli: 161mm Epaisseur: De 1,5 à 5mm Poids: 4Kg.

Matrice de pliage M75-85-63 PP200CNC REF: 140-16-01-00033 Longueur de pli: 161mm Epaisseur: De 5 à 10mm Poids: 5Kg.

Matrice de pliage M80-85-80 PP200CNC REF: 140-16-01-00034 Longueur de pli: 161mm Epaisseur: De 6 à12mm Poids: 6Kg.

Matrice de pliage M95-80-100 PP200CNC REF: 140-16-01-00035 Longueur de pli: 161mm Epaisseur: De 8 à 15mm Poids: 9Kg.

Poinçons et matrices

Poinçons rond standard

Poinçons carré standard

Tipe	Dimensions disponibles mm Ø	Α	В	С	
N28	4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20mm	28 mm	58 mm	31,5 mm	
N40	21/22/24/26/28mm	40 mm	64 mm	43,5 mm	
N50	31/33/35mm	50 mm	58 mm	54 mm	
Pour di	Pour dimensions différents ou spéciaux, contactez le fabricant				

Poinçons rectangulaires standard

	Тіре	Dimensions disponibles mm Ø	Α	В	С
-	N28	7x10/7x15/9x13/9x19/11x17/11x23	28 mm	58 mm	31,5 mm
		13x19/15x21mm			
-	N40	13x25/15x27/17x25/19x30/20x34mm	40 mm	64 mm	43,5 mm
_	Pour dime	ensions différents ou spéciaux, contactez le fabricant			

Poinçons oblongs standard

Matrices rondes standard

Matrice carré standard

Tipe	Dimensions disponibles mm	А	В		
N46	4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20mm	46 mm	28,5 mm		
N60	21/22/24/26/28mm	60 mm	32 mm		
N78	31/33/35mm	78 mm	28,5 mm		
Pour dimensions différents ou spéciaux, contactez le fabricant					

Matrice rectangulaire standard

Tipe	Dimensions disponibles mm	Α	В
N46	7x10/7x15/9x13/9x19/11x17/11x23/13x19/13x25/	46 mm	28,5 mm
	15x21mm		
N60	15x27/17x25/19x30/20x34mm	60 mm	32 mm
Pour dimer	nsions différents ou spéciaux, contactez le fabricant		

Matrice oblongue standard

Outillage grugeage

Référence	Dimensions disponibles mm	Couplage	nécessaire		
MAN28	Tube depuis 16 jusqu'au 28mm	TAP 28	CAB 46		
MAN40	Tube depuis 28,5 jusqu'au 40mm	TAP 40	CAB 60		
MAN50	Tube depuis 40,5 jusqu'au 50mm	TAP 50	CAB 78		
Pour dimensions différents ou spéciaux, contactez le fabricant					

Matrice d'oreille R1

Référence	Model	Dimensions largeur	Acoples necesarios
MOR1-35A	А	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR1-35B	В	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR1-35C	С	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR1-35D	D	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR1-50A	А	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP
MOR1-50B	В	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP
MOR1-50C	С	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP
MOR1-50D	D	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP

Pour dimensions différents ou spéciaux, contactez le fabricant.

Lorsque vous placez des ordres c'est nécessaire préciser la RÉFÉ-RENCE, le MODEL, R (rayon), W (largeur barre plate), T (épaisseur des barres plates)

Dans les modèles B, C et D, précisez diamètre du trou.

La longueur de la pièce pourrait être ajusté.

Capacité de production: 450 à 600 pièces par heure.

Matrice d'oreille R2

Référence	Model	Dimensions largeur	Acoples necesarios
MOR2-35A	А	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR2-35B	В	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR2-35C	С	Depuis 20 jusqu'au 35mm	TAP28 / TAP40
MOR2-50A	А	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP
MOR2-50B	В	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP
MOR2-50C	С	Depuis 40 jusqu'au 50mm	TAP50 / TAP60 avec ATAP

Pour dimensions différents ou spéciaux, contactez le fabricant.

Lorsque vous placez des ordres c'est nécessaire préciser la RÉFÉ-RENCE, le MODEL, R (rayon), W (largeur barre plate), T (épaisseur des barres plates)

Dans les modèles B, C et D, précisez diamètre du trou.

La longueur de la pièce pourrait être ajusté.

Capacité de production: 450 à 600 pièces par heure.

Outillage coins arrondis

Référence	éférence Rayon mm		nécessaire		
MRE28	Rayon depuis 3 jusqu'au 16mm	TAP 28	CAB 46		
MRE40	Rayon depuis 16,5 jusqu'au 26mm	TAP 40	CAB 60		
MRE50	Rayon depuis 26,5 jusqu'au 32mm	TAP 50	CAB 78		
Pour dimensions différents ou spéciaux, contactez le fabricant					

Écrou de couplage pour poinçon

	Référence	Тіре	Écrou de couplage pour poinçon
	120-02-01-00011	TAP28	Écrou de couplage pour poinçon N28
J	140-02-01-00019	TAP40	Écrou de couplage pour poinçon N40
	140-02-01-00020	TAP50	Écrou de couplage pour poinçon N50
	140-02-01-00021	TAP60	Écrou de couplage pour poinçon N60

Accouplement pour les matrices

	Référence	Тіре	Accouplement pour les matrices
	120-02-01-00012	N46	Accouplement pour les matrices N46
)	140-02-01-00024	N60	Accouplement pour les matrices N60
	140-02-01-00025	N78	Accouplement pour les matrices N78

Annexe technique Presse horizontale PP200CNC

Vue éclatée générale Ensemble piston Groupe hydraulique Panneau de configuration Schéma électrique · MACHINE TRIPHASÉE Schéma électrique · MACHINE MONOPHASÉE Connexion de pédale Groupe hydraulique Schéma hydraulique **Caractéristiques techniques des accessoires** Matrice de pliage a 161 mm Matrice pour anneaux

A1. Vue éclatée générale

=

Elemento	Miniatura	Nº de pieza	Descripción	CTDAD
1		020-D934-M10	Tuerca Hexagonal DIN934 M10	18
2	11. III	120-16-01-00210	Puerta PP-200	2
3		020-I7380-M6X16	Tornillo Allen Abombado ISO7380 M6X16	8
4	0	020-D981-KM14	Tuerca Ranurada DIN 981 KM14	1
5		020-D934-M6	Tuerca Hexagonal DIN934 M6	4
6	~	050-PED-00002	Pedal Doble Con Paro De Emergencia	1
7		020-D912-M10X60	Tornillo Allen DIN 912 M10 X60	12
8		020-D931-M24X90	Tornillo Hex. Media Rosca DIN931 M24X90	4
9		120-16-01-00220	Arandela D19.5X1 Antigiro	2
10		122-PLC-0000-001	Placa Caracteristicas General	1
11	N	020-D7337-3X8	Remache De Clavo DIN7337 De Al D3X8	4
12		020-D933-M6X16	Tornillo Hexagonal DIN 933 M6X16	4
13		120-16-01-00122	Tornillo Fijacion Utiles PP-200	1
14		020-D7991-M6X16	Tornillo Allen DIN 7991 M6X16	4
15		031-TAP-00005	Tapon De Plastico Para Tubo Redondo D25	2
16		050-COAL-00018	Armario Coalsa 500X400X150 PP-200	1

Elemento	Miniatura	Nº de pieza	Descripción	CTDAD
17		020-D934-M8	Tuerca Hexagonal DIN934 M8	4
18	020-D7985-M3X10		Tornillo DIN7985 M3X10 Zincado	2
19		020-D934-M4	Tuerca Hexagonal DIN934 M4	4
20		120-16-01-00264	Tapa Agujeros D70	3
21	-Culle	020-D6921-M8X16	Tornillo Hexagonal Embridado Din6921 M8X16	8
22		020-D7991-M6X12	Tornillo Allen Avellanado DIN7991 M6X12	9
23		050-IG-00001	Interruptor General Kg10Ak300	1
24		050-BE-00003	Zocalo Recto Ck03I	1
25		120-16-01-00284	Bulón PP200	3
26	•	120-16-01-00285	Arandela Apoyo Bulones PP200	3
27	7	031-MANT-00001	Maneta en T - M10X20 L68	3
28		120-16-01-00290	Tapa Frontal Movil PP-200	1
29		120-16-01-00291	Barra Guia Cilindro PP200	2
30		120-16-01-00289	Chapa Movil PP -200	1
31		020-17380-M6X8	Tornillo Allen Abombado ISO7380 M6X8	18
32		120-16-01-00118	Barra Principal Tope PP-200	1

=

Elemento	Miniatura	Nº de pieza	Descripción	CTDAD
33	/	120-16-01-00119	Barra Auxiliar Tope PP-200	1
34	120-16-01-00305		Pasamano Del Tope PP-200	1
35		120-16-01-00304	Union Barras Tope	1
36		030-D6325-00011	Pasador Cilindrico DIN 6325 D25x50	4
37		120-16-01-00306	Guia Antigiro PP200	2
38		030-BOL-00001	Bola Diametro 20	2
39		020-D914-M10X25	Esparrago Allen Con Punta DIN 914 M10x25	2
40	-	031-MAG-00005	Empuñadura Graduable Macho M8X20 Negra con Boton Naranja	2
41		120-16-01-00302	Metacrilato Negro Tapa Superior PP200	1
42		020-D913-M8X16	ESPARRAGO ALLEN DIN 913 M8X16	4
43		125-16-01-00016	Punzón Matriz De Plegar Serie PP-200	1
44		020-D913-M6X25	Esparrago Allen DIN913 M6X25	1
46	6	120-02-01-00017	Arandela D35XD13X8	2
47		020-D933-M12X40	TORNILLO HEXAGONAL DIN 933 M12x40	2
48		020-D914-M8x12	Esparrago Allen Con Punta DIN914 M8X12	1
49	0	020-D9021-M10	ARANDELA DIN 9021 M10	4

Elemento	Miniatura	№ de pieza	Descripción	CTDAD
50		020-D933-M10X70	Tornillo Hexagonal DIN 933 M10x70	4
51		020-D6912-M12X30	Tormillo Allen Cabeza Reducida Din6912 M12X30	2
52		020-I7380-M6X30	TORNILLO ALLEN ABOMBADO ISO7380 M6X30	2
53		120-17-01-00042	CHAPA SOPORTE PANTALLA ESA S625	2
54		050-CNC-00003	Pantalla ESA S625	1
55	0	020-D125B-M4	Arandela Biselada DIN125B Para M4	4
56		120-16-01-00317	Soporte Cuadro Electrico PP200	2
57	4	122-ADH-00003	Adhesivo Triangulo 400Vac De 100 Mm	1
58		120-16-01-00318	Chapa Prensaestopas	1
59		120-02-04-00169	Tapa Pasacables	1
60		050-PE-00002	Prensaestopa PG9 Negro	4
61		050-PE-00008	PRENSAESTOPA M25	1
62		050-PE-00006	Prensaestopa M20X1.5	3
63		120-16-01-00319	Chapa Montaje	1
64		020-17380-M6X6	Tornillo Allen Abombado ISO7380 M6X6	6
65		020-17380-M4X6	Tornillo Allen Abombado ISO7380 M4X6	2

=

Elemento	Miniatura	Nº de pieza	Descripción	CTDAD
66	4000	122-CAL-0602-002	Calca PP200, C2006 i C3006	1
67	-	120-16-01-00349	Chapa Seguidor Potenciometro PP200	1
68		120-16-01-00350	Chapa Soporte Tapa superior PP200	1
69		120-16-01-00351	Chapa Soporte Potenciometro Lineal PP200	1
70	0	020-D125B-M5	Arandela DIN 125 B M5	2
71	1	050-ENC-00011	Potenciometro RPH 275 5K C	1
72	Í.	131-16-01-00040	Conjunto Base Matriz De Plegar PP-200	1
73		130-16-01-00240	Tapa Superior PP200	1
74	age to	130-16-01-00228	Montaje Instalacion Hidraulica PP-200	1
75		130-16-01-00227	Conjunto Mesa Trabajo PP-200	1
76		130-16-01-00225	Conjunto Cilindro Montado	1
77		130-16-01-00220	Grupo Hidraulico PP -200	1
78		130-16-01-00218	Conjunto Estructura Pie PP-200	1
79		120-16-01-00355	Chapa Antidesgaste Mesa PP200	1
80	0	020-AET-M6	Arandela Especial para DIN912 AET - M6	2
81		DIN 913 - M16 x 20	Tornillo de ajuste de boquilla hexagonal	15

A2. Ensemble piston

=

Elemento	Miniatura	Nº de pieza	Descripción	CTDAD
76.1		020-D914-M8x12	Esparrago Allen Con Punta DIN914 M8X12	1
76.2		030-DP-00012	Dolla Partida D30XD34X25	4
76.3	0	040-BA-00015	Collarin Ba D90XD105X11.4	1
76.4	0	040-DPS-00007	Junta DPS D110XD96X22.5X33	1
76.5	0	040-GSF-00001	GUIA SF D90XD95X15	1
76.6	0	040-JT-00026	JUNTA TORICA Ø105X5 90 Shore	1
76.7	0	040-JT-00027	JUNTA TORICA D52X4 90 Shore	1
76.8	0	040-RAS-00008	Rascador D90XD100X7/10	1
76.9	Ø	120-16-01-00223	Empaquetadura Cilindro PP-200 D110xD90	1
76.10		120-16-01-00225	Vastago Cilindro D110xD90 PP-200	1
76.11	0	120-16-01-00229	Aro Separador Cilindro D110xD90 PP-200	1
76.12		120-16-01-00230	Tuerca Trasera Cilindro PP-200	1

Elemento	Miniatura	Nº de pieza	Descripción	CTDAD
76.13		120-16-01-00282	Dolla De Bronce Cilindro PP-200 D110xD90	1
76.14		130-16-01-00226	Conjunto Camisa Cilindro D110XD90 PP-200	1

A3. Groupe hydraulique

Elemento	Miniatura	Nº de pieza	Descripción				
77.1		020-D125B-M10 Arandela Biselada DIN125B Para M10		4			
77.2	020-D6921-M8X		Tornillo Hexagonal Embridado Din6921 M8X16				
77.3		020-D912-M10X20	Tornillo Allen DIN912 M10X20				
77.4	J	020-D912-M5X50	Tornillo Allen DIN912 M5X50	4			
77.5		020-D912-M6X20	TORNILLO ALLEN DIN912 M6X20	4			
77.6		020-D912-M6X50	TORNILLO ALLEN DIN912 M6X50	4			
77.7		020-D933-M10X45	Tornillo Hexagonal DIN933 M10X45	4			
77.8		040-AE-00007	Acoplamiento Lado Motor 3/4 / 5.5Cv	1			
77.9	0)	040-AE-00008	Acoplamiento Lado Bomba Lo Para Motor 3/4 / 5.5 Cv	1			
77.10		040-AE-00009	Estrella Acoplamiento Para Motor 3/4 / 5.5 Cv	1			
77.11		040-BH-00006	Bomba Hidraulica De Aluminio De 5 L 1LO5DE10R	1			
77.12	040-CA-00002		Campana Acoplamiento Bomba Tipo Lo Motor 3/4/5.5 CV				
77.13	040-ELV-00012 Electrovalvula Doble Bobina 5EVP3D1C02D24		Electrovalvula Doble Bobina 5EVP3D1C02D24	1			
77.14		040-FL-00002 Filtro De Aspiracion 1/2' REF 2FA15R125N		1			
77.15	040-JMG-00002 Junta Metal Goma 1/4' Gas		Junta Metal Goma 1/4' Gas	1			

_

Elemento	Miniatura	Nº de pieza Descripción		CTDAD		
77.16	0	040-JMG-00004 Junta Metal Goma 3/8' Gas				
77.17		040-NA-00001	Visor Nivel Aceite De 3/8' Gas			
77.18		040-RMM-00003	Racor 3/8" Macho Macho	2		
77.19		040-RRMM-00002	Racor Reducido 3/8'-1/4' Macho Macho	1		
77.20	040-RRMM-00		Racor Reducido 1/2-3/8 Macho Macho	1		
77.21		040-TLL-00003	Tapon Llenado De 1/2' Doble Respiradero Y Filtro	1		
77.22		040-VLP-00002	Valvula Limitadora Presion 5RII02P2F/03 -T210 tarada a 210 Bares			
77.23		050-ME-00003	Motor Electrico 2.2Kw 1500Rpm 50-60Hz B5 220/380V			
77.24		120-16-01-00251	Aceite Hidraulico HM68 25 Litros	1		
77.25	120-16-01-00275		Placa Componentes Hidraulicos PP-200	1		
77.26	5	120-16-01-00281	Manguera Flexible 1/4' Macho 1/4'-Tg 1/4' L= 430 mm Presion De Trabajo 250 Bars	1		
77.27	130-16-01-00215 Desposito Hidráulico PP-200					

A4. Panneau de configuration

-CONTROL1

A6. Schéma électrique · MACHINE MONOPHASÉE

ETHERNET	MG8		8
EVF (FORWARD ELECTROVALVE)	MG5	PG9	7
PEDAL	WG3	69d	9
EVR (REVERSE ELECTROVALVE)	WG6	69d	5
		69d	4
MESH WITH SIGNAL WIRES		M25	3
PUMP MOTOR	MG2	M20	2
POWER INPUT	NG1	M20	Ļ
DESCRIPTION	ELECTRIC WIRE	PLASTIC CABLE GLAND	PLATE HOLE NUMBER
3 PHASE MODEL			

SINGLE PHASE MODEL				S		VALVE)		DVALVE)	
	DESCRIPTION	POWER INPUT	VF POWER INPUT	MESH WITH SIGNAL WIRE	VF FORWARD CONTROL	EVR (REVERSE ELECTRO	PEDAL	EVF (FORWARD ELECTRC	ETHERNET
	ELECTRIC WIRE	MG1	MG10		69W	MG6	MG3	MG5	MG8
	PLASTIC CABLE GLAND	M20	M20	M25	PG9	PG9	PG9	PG9	
	PLATE HOLE NUMBER	Ł	2	3	4	5	9	7	8

1

ſ

A7. Connexion de pédale

A8. Groupe hydraulique

A9. Schéma électrique · MACHINE TRIPHASÉE

A10. Schéma électrique · MACHINE MONOPHASÉE

SF1 : PEDAL EMERGENCY STOP

CONTROL1 : S625 ESA NUMERIC CONTROL

N NARGESA®

.

A11. Schéma hydraulique

- 1. Filtro
- 2. Bomba hidráulica
- 3. Motor Eléctrico
- 4. Limitadora de presión
- 5. Electroválvula principal
- 6. Limitadora de presión regulable

Caractéristiques techniques des accessoires

Matrice de pliage a 161 mm. V16, 22, 35, 50 mm.

Matrice pour anneaux REF: 140-16-01-00003

Matrice de mise en forme de barreaux de grille torsadés REF: 140-16-01-00013

> Porte-poiçons Promecam REF: 140-16-01-00023

Matrice de mise en forme d'agrafes de barreaux REF: 140-16-01-00028

Matrice de pliage a 161 mm. V16, 22, 35, 50 mm.

Description

Matrice de pliage jusqu'à 161mm avec 4 ouvertures (16, 22, 35, 50mm) et un poinçon de 88°. Cette forme permet de plier des tôles de 1mm à 8 mm. Le poinçon de diamètre extérieur de 70 mm permet de réaliser des formes complètement fermées jusqu'à un minimum de 75mm d'aile intérieure.

V16	Tôle de 1 a 3mm
V22	Tôle de 2 a 4mm
V35	Tôle de 3 a 6mm
V50	Tôle de 4 a 8mm
Longueur maximale de pli	161 mm
Epaisseur maximale de pli	8 mm

* Pour des épaisseurs différentes, consulter le fabricant.

Élément	REF	Description	Montant
1	020-D913-M6X25	ESPARRAGO ALLEN DIN 913 M6X25	1
2	125-16-01-00016	PUNZON MATRIZ DE PLEGAR SERIE PP-200	1
3	125-16-01-00006	MATRIZ DE PLEGADO 20.09X150	1
4	020-D912-M12X30	TORNILLO ALLEN DIN 912 M12x30	2
5	020-D913-M8X16	ESPARRAGO ALLEN DIN 913 M8X16	2
6	125-16-01-00005	GUIA REGLA PLEGADO	1
7	125-16-01-00004	BASE MATRIZ PLEGAR SERIE PP-200	1

Matrice pour anneaux

Description

Matrice pour mettre en forme des volutes ou des balustrades anglaises en rambarde, utilisée comme pièce de forge ornementale pour les grilles, des portails, des clôtures, barrières, etc... pour l'assemblage entre les barreaux. Pour d'autres mesures et d'autres applications, consulter le fabricant.

Largeur max.	Épaisseur	Mesures extérieures	Poids
50 mm	6 mm	90 mm	9.3 Kg
* Pour d'autres mesu	ures et d'autres an	plications, consulter le fabrica	nt

es mesures et d'autres applications, consulter le fabricant.

Élément	REF	Description	Montant
1	125-16-01-00166	EJE CONFORMAR ANILLAS D90	1
2	125-16-01-00012	PLETINA ANILLA D90 INFERIOR	1
3	125-16-01-00013	PLETINA ANILLA D90 INTERMEDIO	1
4	125-16-01-00014	PLETINA ANILLA D90 SUPERIOR	1
5	020-I7380-M10X30	TORNILLO ALLEN ABOMBADO ISO 7380 M10x30	2

Élément	REF	Description	Montant
1	125-16-01-00017	SOPORTE MATRIZ CONFORMAR ANILLAS PP200	1
2	020-DIN933-M10X20	TORNILLO HEXAGONAL DIN 933 M10X20	1
3	020-DIN933-M12X30	TORNILLO HEXAGONAL DIN 933 M12X30	2
4	020-DIN125B-M12	ARANDELA DIN 125 B M12	2
5	125-16-01-00015	BASE MATRIZ CONFORMAR ANILLAS PP200	1
	020-D7991-M10X25	TORNILLO ALLEN AVELLANADO DIN7991 M10X25	2

Matrice de mise en forme de barreaux de grille torsadés

Description

Matrice pour plier des planches, rampes, ou tiges en carré pour réaliser de beaux effets tressés. Très utilisée en clôtures et grillages.

Pour rampes de 6,12 et 14mm. (Pour dimensions différents ou spéciaux, contactez le fabricant)

Capacité máx.	Cuadradillo de 14mm	
Capacité min.	Chapa de 2x40mm	
Poids	18Kg	
* Deux disse se intérieur différente europérieur en state de la fabrie eut		

* Pour dimensions différents ou spéciaux, contactez le fabricant

Élément	REF	Description	Montant
1	020-D912-M8X65	Tornillo Allen DIN 912 M8X65	1
2	125-16-01-00074	Centraje Fijo	1
3	125-16-01-00073	Soporte Fijo 50x50	1
4	020-D933-M16X70	Tornillo Hexagonal DIN 933 M16x70	2
5	125-16-01-00072	Postizo Central Para Pletina 6	1
6	125-16-01-00071	Postizos Laterales Para Pletina 6	2
7	020-D7991-M6X20	Tornillo Allen DIN 7991 M6X20	3
8	125-16-01-00070	Soporte Movil 50x50	1
9	020-D912-M12X35	Tornillo Allen DIN 912 M12X35	3
10	131-16-01-00023	Anclaje Posterior	1
11	125-16-01-00125	Postizo Central Para Pletina 14	1
12	125-16-01-00126	Postizos Laterales Para Pletina 14	2
13	125-16-01-00124	Postizos Laterales Para Pletina 12	2
14	125-16-01-00123	Postizo Central Para Pletina 12	1

Porte-poiçons Promecam

Description

Porte-poinçons pour tout type de poinçons de plieuse Promecam.

Longueur maximale de pli	150 mm
Poidds	14Kg

Compatible avec n'importe quel poinçon Promecam.

Élément	REF	Description	Montant
1	PUNZON 120	PUNZON PROMECAM 10_00 88 835	1
2	125-16-01-00021	Portapunzones Promecam	1
3	020-D913-M10X10	ESPARRAGO ALLEN DIN 913 M10X10	1
4	020-D913-M6X20	ESPARRAGO ALLEN DIN 913 M6X20	2
5	020-D934-M20	TUERCA DIN 934 M20	1
6	125-16-01-00131	Soporte Posterior	1
7	125-16-01-00130	Guia D70 Soporte Posterior	1
8	020-D912-M10X50	TORNILLO ALLEN DIN 912 M10X50	1
9	125-16-01-00132	Tornillo Regulador Refrentado	1
10	020-D912-M16X60	TORNILLO ALLEN DIN 912 M16X60	1

Matrice de mise en forme d'agrafes de barreaux

Description

Matrice pour fabriquer les agrafes utilisées pour unir des barreaux de forge sans besoin de soudure.

Capacité maximale	25x5 mm
Poids	9 Kg

_

=

Élément	REF	Description	Montant
1	020-D985-M12	Tuerca Autoblocante DIN 985 M12	2
2	125-16-01-00144	Varilla Roscada Muelle	2
3	125-16-01-00143	Soporte Trasero Muelle	1
4	125-16-01-00146	Centraje Muelle	1
5	125-16-01-00145	Muelle Compresion Di20xDe26 Paso 9mm 9 Espiras Finales Planos	1
6	125-16-01-00136	Arandela Muelle	1
7	125-16-01-00135	Eje Extractor	1
8	125-16-01-00132	Placa Base Util	1
9	020-D125B-M16	Arandela Biselada DIN125B Para M16	2
10	020-D933-M16X30	Tornillo Hexagonal DIN 933 M16x30	2
11	125-16-01-00137	Cuadrado Empuje 20x20	1
12	020-D933-M8X30	Tornillo Hexagonal DIN 933 M8x30	1
13	125-16-01-00141	Eje Centrador	1
14	020-D125B-M12	Arandela DIN 125 B M12	3
15	020-D933-M12X30	Tornillo Hexagonal DIN 933 M12x30	1
16	020-D933-M10X50	Tornillo Hexagonal DIN 933 M10x50	2
17	125-16-01-00138	Cuadrado Guia Entrada	1
18	125-16-01-00147	Tornillo Regulacion	2
19	020-D934-M12	Tuerca DIN 934 M12	2
20	020-D934-M6	Tuerca DIN 934 M6	2
21	020-D933-M12X35	Tornillo Hexagonal DIN 933 M12x35	2
22	020-D913-M6X10	Esparrago DIN 913 M6x10	2
23	125-16-01-00134	Grapa Movil	2
24	125-16-01-00133	Cuerpo Util Grapas	1
25	020-D912-M6X16	Tornillo Allen DIN 912 M6x16	1
26	020-D913-M6X16	Esparrago Allen DIN 913 M6x16	1
27	020-D125B-M6	Arandela Biselada DIN125B para M6	1
28	125-16-01-00142	Tope Lateral Util	1
29	020-I7380-M6X16	Tornillo Allen ISO 7380 M6x16 8.8 Pavonado	2
30	125-16-01-00148	Tapa Trasera	1
31	125-16-01-00149	Sepador Tapa Trasera	1
SC32	131-16-01-00043	Conjunto Arrastre Util Grapas	1

POINÇONNEUSES HYDRAULIQUES

PRESSES PLIEUSES HORIZONTALES

CISAILLES HYDRAULIQUES

MACHINES À FORGER À CHAUD

PRESSES DE SERRURES

CINTREUSES À GALETS

CINTREUSES À VOLUTES

FOURS DE FORGE

BROCHEUSES HYDRAULIQUES

CINTREUSES À TUBES

PRESSES PLIEUSES HYDRAULIQUES

MACHINES À GAUFRER À FROID

MARTEAUX PILON POUR LA FORGE